EMD—BP神经网络预测模型及应用
数据分析的方法缺乏自适应性。Zhaohua Wu[11]等人通过大量的实验,证实经验模态分解(EMD,Empirical mode decomposition)具有类似小波变换中的二进滤波器特性,通过分解、数据重组后实现了数据的去噪,汲取了小波变换优势,同时又克服了小波变换中的小波基选择难的问题。本文将经验模态分解和BP神经网络相结合,构建了一种基于EMD-BP神经网络的预测模型,通过对中国石化股票进行预测模拟仿真,实验结果得出结论,将EMD用于时间序列的预测分析,大大降低了扰动因素的影响,提高了预测精度。1 时间序列的BP神经网络训练神经网络具有较强的学习能力和适应能力,在非线性系统中的预测方面得到了广泛的应用。考虑到金融数据是一类非线性较强的时间序列,本文选用BP神经网络作为预测工具。BP网络[9-10]是一种多层前馈型神经网络,其神经采用的传递函数一般都是Sigmoid(S形弯曲)型可微函数,是严格的递增函数,在线性和非线性之间显现出较好的平衡,所以可实现输入和输出间的任意非线性映射,
<<上一页 下一页>>
广州市越秀区图书馆版权所有。
联系电话:020-87673002
本站访问人数: