首页 > 电子期刊 > J > 计算机时代

EMD—BP神经网络预测模型及应用

数据近似的新数据进行预测实验。数据重组的方法有多种,本文采用相关系数分析法进行数据的筛选。由于篇幅有限,关于EMD分解与重构的代码不在本文提供。2.3 应用训练好的神经网络对合成数据预测对于非线性系统,BP神经网络预测有着明显的优势。但是在复杂的非线性系统中,非平稳因素给预测带来了一定的困难。正是因为EMD分解降低了各个分量的平稳性[12],才得到了广泛应用[13-15]。金融数据等时间序列随着时间,以及在多种因素的影响下会随之改变,所以数据本质上是非平稳的,因此利用神经网络对该数据进行预测,数据的平稳性使得其预测结果不是很理想,为了提高预测精度,我们用EMD方法对数据进行分解,以降低其非平稳性对预测精度的影响。然后对分解后的各分量进行相关系数分析比较,选取有用的IMF分量,进行数据的合成,从而得到一个与原始数据近似的新数据。将重组后的拟合数据输入到训练好的BP神经网络进行预测。预测过程如图1所示。3 应用实例和分析3.1 股票数据的BP神
<<上一页  下一页>>

首页 > 电子期刊 > J > 计算机时代

广州市越秀区图书馆版权所有。
联系电话:020-87673002

本站访问人数: