基于GPU—CUDA的共轭斜量法实现及性能对比
onjugate gradient method based on GPU-CUDA is implemented to solve a general large-scale linear equation system. The results show that it is highly efficient. When the rank of the coefficient matrix is over 3000, the speedup will be over 14 times. Besides, it has the same accuracy and stability as Gaussian elimination method. The conjugate gradient method based on GPU-CUDA becomes a fast and effective method for solving large-scale general linear equation systems.Key words: GPU; CUDA; large-scale linear equation system; conjugate gradient method; algorithm; parallel computation0 引言偏微分方程数值解法(包括有限差分法、有限元法)及大量的数学物理方程数值解法最终都将演变成求解大型线性方程组[4,7]。随着离散网格数量的增加,线性方程组的阶数也同步增长。目前,求解实际问题的线性方程组的阶数一般都超过1000阶,因此,探讨稳定、快速、精确的大型线性方程组解法具有特别重要的意义。在迭代法中,共轭斜量法(亦称共轭梯度法)被公认为最好的方法之一。文献[5]等所述基于CPU的常规共轭斜量法已非常成熟,
<<上一页 下一页>>
广州市越秀区图书馆版权所有。
联系电话:020-87673002
本站访问人数: