首页 > 电子期刊 > J > 计算机时代

一种自适应停止的SOM神经网络及其应用

达到某一设定的值为条件,满足这个条件就退出训练,否则继续对网络进行训练,返回步骤⑵。1.3 SOM网络的改进在SOM的训练过程中,权值一开始是一系列的随机的小数,随着训练过程的进行,权值不停地改变,更加靠近每一个输出神经元的聚类中心,直到达到一个设定的训练次数或学习率衰减到一定的值。但设定的训练次数往往需要多次实验才能确定;而学习率最后衰减的阈值需要靠经验来确定,如果设定为0,会使网络陷入亚稳定状态[1],设置合适的阈值需要适应不同的实际情况。故提出一种利用权值导数来判断何时该停止训练的方法。每个神经元都代表一个聚类中心,而在传统的聚类过程中,类中心是随着聚类的过程不断地靠近每一类数据中心,而在SOM神经网络中,聚类中心的表征形式又是各个输出神经元的权值向量[Wj1,Wj2,…,Wji](j=1,2,…,M*N),所以定义每一次训练后权值的变化,如式⑸:来表示类中心的变化情况。其中其中Wn表示当前训练后的权值,Wn-1表示前一次训练后的权值,
<<上一页  下一页>>

首页 > 电子期刊 > J > 计算机时代

广州市越秀区图书馆版权所有。
联系电话:020-87673002

本站访问人数: