首页 > 电子期刊 > J > 计算机时代

基于支持向量回归的行程时间预测算法

设计是分不开的。下一步我们将考虑在气象条件影响下的行程时间预测算法。参考文献:[1] V. N. Vapnik. The Nature of Statistical Learning Theory[M]. New York: Springer,1995.[2] H. Yang, L. Chan, and I. King. Support vector machine regression for volatile stock market prediction[M].Berlin:Springer,2002.[3] D. C. Sansom, T. Downs, and T. K. Saha. Evaluation of support vector machine based forecasting tool in electricity price forecasting for Australian National Electricity Market participants[J]. Journal of Electrical and Electronics Engineering,2003.22(3):227-234[4] E. Fraschini, K. Ashausen. Day on Day Dependencies in Travel:First Result Using ARIMA Modeling[J]. Arbeitsberichte Verkehrs-und Raumplanung,2001.63.[5] H. Sun, H. Liu, and B. Ran. Short term traffic forecasting using the local linear regression model[A]. 82nd Annual Meeting of the Transportation Research Board[C]. Washington,2003.[6] A. Kotsialos, M. Papageorgiou, C. Diakaki, Y. Pavlis, and F. Middelham. Traffic flow modeling of large-scale motorway networks using the macroscopic modeling tool METANET[J]. IEEE Transactions on Intelligent Transpor
<<上一页  下一页>>

首页 > 电子期刊 > J > 计算机时代

广州市越秀区图书馆版权所有。
联系电话:020-87673002

本站访问人数: