大数据背景下的数据挖掘课程教学新思考
教学的首要任务是构建起整个课程的核心知识结构(如图1所示),同时,简单介绍相关的统计学、机器学习等计算机专业学生不太了解的非专业知识。课程核心知识结构是教学的主线,是学生必须要掌握的。首先,让学生明确数据挖掘前要先经过预处理,再存入数据仓库;其次,针对具体情况利用相关的挖掘工具和挖掘算法进行挖掘;最后,挖掘结果以可视化的形式有效地展示给用户。教学的重点是挖掘算法和挖掘工具。对于挖掘算法,以数据挖掘国际会议ICDM(the IEEE International Conference on Data Mining)的专家评选出的十大经典算法(见表1)为主[5],结合相关实例给学生介绍各种算法的基本思想和相关概念,重点介绍使用较多的分类、聚类、关联、序列和机器学习这几种算法,先为学生打下良好的理论基础。3 以实例为切入点,注重理论结合实践数据挖掘课程主要针对我校研究生开设,考虑到学生就业和当前市场需求,以及课程本身实践性强的特点,在教学过程中要注重理论结合实践,注意培养学
<<上一页 下一页>>
广州市越秀区图书馆版权所有。
联系电话:020-87673002
本站访问人数: