大数据背景下的数据挖掘课程教学新思考
生解决实际问题的能力。因此,在给学生介绍目前常用的数据挖掘工具(如IBM Intelligent Miner、SAS Enterprese Miner、SPSS Clementine、Weka等)的基础上,结合市场应用需求,以实例为切入点,分别分析数据挖掘在互联网日志分析、电子邮件分析、互联网广告挖掘、电子商务、移动互联网等各大领域中的实际应用情况和成功案例(表2)。同时,还可以从内容挖掘、结构挖掘和用户访问模式挖掘这三个方面简单介绍WEB挖掘的基本知识[6]。这样,课程本身就脱离了枯燥的理论,让学生对数据挖掘有了感性认识,激发学习兴趣。⑵ 过滤垃圾邮件。\&互联网广告\&⑴ 通过大数据挖掘,精准定位各类客户的广告形式;⑵ 准确评估广告效果。\&电子商务\&用数据提升整体营销;通过日志挖掘做客户分析;用序列算法分析商品上架时间;用聚类算法对商品分类、提升会员管理。\&移动互联网\&⑴ 锁定用户的数据价值,通过地理位置信息挖掘出有价值的东西;⑵ 文本挖掘。\&]在教学过程中,贯穿以“能力培养为目
<<上一页 下一页>>
广州市越秀区图书馆版权所有。
联系电话:020-87673002
本站访问人数: